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So far in FoML

Intro to ML and Probability refresher
MLE, MAP and fully Bayesian treatment

Supervised learning

Q.
b.
C.
d.

Linear Regression with basis functions
Bias-Variance Decomposition
Decision Theory - three broad classification strategies

Neural Networks

Unsupervised learning

Q.

K-Means, Hierarchical, and GMM for clustering
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For today

e PCA - Principal Component Analysis (Pearson, 1901) & (Hotelling,
1933)
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Manifold coordinates as Latent variables
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{x1, x9} = {t cos(3 t), t sin(3 #)}
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https://www.wolfram.com/language/introduction-machine-learning/dimensionality-reduction/

Example - facial image data

e Possible degrees of freedom

o Skull size

o Skin color

o Eye color

o Facial attributes

o Horizontal orientation
o Vertical orientation

o Mood (e.g., happy)

o etc.
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Example - facial image data

e Possible degrees of freedom

o Skull size

o Skin color . .
Latent subspace will be a nonlinear

o Eye color transformation of image data

o Facial attributes

o Horizontal orientation
o Vertical orientation

o Mood (e.g., happy)

o etc.

o]
2r68ah R0ZBS dapd H0Y PSR I. ) I ]_,

Ill YR genfire W devmEe Data-driven Intelligence

Indian Institute of Technology Hyderabad & Learning Lab




PCA

e Linear lotent subspaces
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What is PCA?

e Joolto summarize a large set of variables (dimensions) with a

smaller set
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What is PCA?

e Joolto summarize a large set of variables (dimensions) with a

smaller set

o Of ‘representative’ variables that explain the ‘variability’ in the original set
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What is PCA?

e Joolto summarize a large set of variables (dimensions) with a

smaller set

o Of ‘representative’ variables that explain the ‘variability’ in the original set
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What is PCA?

e Smaller set need not be a subset of original variables!
o Rather, combinations of original variables

e They may not mean the same as originals
o lost interpretability!

e New variables are independent of each otherl
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What is PCA?

e Gives the directions along which the data are highly ‘variable’

o Projects linearly such that the variance in the projected space is maximal
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PCA

e Data {X17X27°"7XN} XzERD

e Aim: project data onto M dimensional space (M < D) maximizing

the variance of the projected data
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PCA

e Mean X

e Covariance S =
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1D representation using PCA

e Project data onto a direction where most of the variance is
preserved

e Projecting onto u, gives a scalar — 1D representation

Z; = 111TXz'
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1D representation using PCA

e Direction of u, is important — consider unit vector in that

direction

[Jual], =1
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1D representation using PCA

e Consider the variance in the new subspace

Var|z| =
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1D representation using PCA

o Let's find the direction (u,) that maximizes the variance in z

argmax u;’Su; suchthat ufu=1
ux
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PCA via maximum variance

e Repeat the procedure for the next M-1 orthogonal vectors

o Maximize the variance by projecting onto a direction orthogonal to the found
ones

o These are the next M-1 eigenvectors of the covariance matrix (S)
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PCA - Eigen decomposition

e Forthe symmetric PSD matrix S =UAU7T
e Eigenvectors are orthonormal (contained in U)

e Eigenvalues are non-negative (contained in A)
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PCA - Eigen decomposition

e Variance is Tr(S) S = UAUT
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PCA - some notes
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PCA - Scaling the features

e Sensitive to the scales of the features/variables
o Features with greater range dominate the process of finding the PCs

e Perform standardization to prevent this
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PCA - Proportion of the Variance Explained

e How much of the information is lost by projecting onto PCs?
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PCA - Proportion of the Variance Explained

e J[otal variance
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PCA - Proportion

e J[otal variance

JI1 2680H 0388 deps H0Y IETrE
TR senfirast < YevmEmE

Indian Institute of Technology Hyderabad

of the Variance Explaineo

e \Variance explained by the ‘m't" PC
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PCA - Proportion of the Variance Explained

e Jotal variance e \Variance explained by the ‘m't" PC
p b 1 n ) 1 n
ZVar(Xj) = Z 7 L i — Z zfm
j=1 j=1 " i=1 n P

PVE of the ‘m'th PC =
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PCA - How many PCs to consider?

e Forann X p data matrix

o min(n-1, p) PCs are possible
o  Why?
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PCA - How many PCs to consider?

e Forann X p data matrix
o min(n-1, p) PCs are possible

e Not all of them may be interesting
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PCA - How many PCs to consider?

e Generally, we want the ‘smallest’ number of them — good

understanding of the data

e — scree plot & elbow >
3
=
o | 3 @ |
g © & o©
= w
K ®
% © 8 ©
[ 8 o 7
[0) (]
< =
= Qo
§ S e 3+
> o
s 2
[T T o |
<] S o
E
3
(6]
o | o _|
o o
I I I I I I I I I I I I I I
1.0 1.5 2.0 25 3.0 3.5 4.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Principal Component Principal Component

YR genfire W devmEe Data-driven Intelligence
Indian Institute of Technology Hyderabad & Learning Lab

- DilL
Ill 2r68ad 0388 dend H0P resoerk I. I




PCA

e Doesn't discard the redundant variables
o Finds new variables (linear combinations of the ‘p’ variables) that summarize the
data well
o The ‘best’ variables (among the all possible linear combinations)

o Resulting new features are uncorrelated (covariance matrix will be diagonal)
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Applications of PCA

e Dimensionality reduction — tackles curse of dimensionality
e Less compute requirement
e |ess prone to overfitting

e Useful preprocessing
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Next

e PCA continued
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